The exact contribution of NETs to antimicrobial defense has been difficult to nail down, but researchers are slowly elucidating their roles in protecting the body from invaders and other threats, including runaway inflammation. Those roles include:

TRAPPING
NETs immobilize microbes and prevent their dissemination.

BARRIERS
NETs can form dense, exclusionary barriers in the eye that prevent microbes from penetrating the body.

IMMUNE SIGNALING
NET components act as alarm signals to activate additional immune cells and propagate the inflammatory response. Macrophages and dendritic cells sense various components of the NETs, including DNA and proteins, which leads them to produce proinflammatory mediators.

COUNTERING INFLAMMATION
When present at high density, NETs can cleave proinflammatory cytokines and help resolve inflammation.