# **BUILDING BETTER REAGENTS**

Antibody therapeutics represents the fastest growing sector of pharmaceutical sales, with 47 monoclonal antibodies currently on the market and 300 more in clinical trials. But facing problems of inconsistent, time-consuming, and costly antibody production, some researchers are turning to alternatives—nucleic acid aptamers and protein scaffolds—to target specific proteins of interest, in the lab and in the clinic.

## **ANTIBODIES**



The animal's B cells then generate antibodies that bind to different regions, or epitopes, on the protein.

## **POLYCLONAL ANTIBODIES**

The diverse antibodies that bind to the target protein's numerous epitopes can then be isolated and purified for use.



#### MONOCLONAL ANTIBODIES

Alternatively, the immunized animals' B cells can be isolated from the spleen or lymph nodes and fused with a tumor cell to generate immortal hybridoma lines. Those cell lines that produce the desired antibody against a specific epitope of the target protein can then be grown in large bioreactors to scale up production of the antibody.



- Size: Large (about 150 kDa)
- Binds specific epitope?: Typically no. Diverse antibodies against different epitopes, making them less sensitive to antigen changes than monoclonal antibodies. Antibodies will also vary in affinity and specificity for a given target.
- **Production:** 2-4 months; entirely in animal models
- Lot-to-lot heterogeneity: High
- Shelf life: Limited

- Size: Large (about 150 kDa)
- Binds specific epitope?: Yes. As they offer specific recognition of a single epitope on the target protein, monoclonal antibodies are sensitive to molecular changes of that epitope and offer precise molecular recognition of a group of structurally similar molecules.
- Production: Six months; requires animal models and the use of expensive cell cultures of higher eukaryotes for growth in bioreactors of up to 2,000 L
- Lot-to-lot heterogeneity: Low, though downstream production processes and drift in the cell line's antibody expression can introduce variation
- Shelf life: Limited

### ANTIBODY ALTERNATIVES

#### NUCLEIC ACID APTAMERS

Aptamers are short molecules of single-stranded DNA or RNA, typically less than 100 nucleotides in length, that form specific 3-D structures capable of binding target proteins.





#### PROTEIN SCAFFOLDS

Protein scaffolds, formed from polypeptide fragments or whole proteins, have similarly specific interactions with desired target molecules.



against a library of protein scaffolds presented on the surface of bacteriophages. Filter for bound reagents and rinse away unbound ones.

Infect *E. coli* with bacteriophage carrying positive binders to amplify a new, enriched library and screen again.

After many rounds of screening, a scaffold that efficiently binds a single epitope is chosen.



- Introduce a plasmid encoding the desired scaffold into *E. coli* to scale up production.
- Size: Small (~15 kDa), opening up new targets that were previously inaccessible to antibodies
- Binds specific epitope?: Yes
- **Production:** Weeks; entirely in vitro with lower organisms such as bacteria
- Lot-to-lot heterogeneity: Very low
- Shelf life: Stable at room temperature for months
- Size: Small (<25 kDa), opening up new targets that were previously inaccessible to antibodies
- Binds specific epitope?: Yes
- Production: Weeks; chemically synthesized
- Lot-to-lot heterogeneity: Very low
- Shelf life: Stable at room temperature for months